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1. Introduction



1.1 Background
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(a)

Fig. Humanity’s explorations of the underwater world. 

(a) Coral reef ecosystem. (b) Polymetallic sulphide slot. (c) 

Deep-sea mining facility. (d) Autonomous underwater vehicle 

(AUV).

(b)

(c) (d)

⚫ The ocean covers approximately 71% of the 

Earth’s surface and is a vast repository of 

biological and chemical resources essential for 

human survival.

⚫ The advancement of underwater image 

enhancement will facilitate the development of 

marine scientific research and engineering 

construction.



1.2 Challenges
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Fig. Degraded underwater images.

⚫ Absorption and scattering of natural light by water. 

⚫ Underwater images often face problems such as color 

distortion, low contrast, and blur.

⚫ Specifically designed hardware is usually expensive 

and requires a significant amount of power.

The field of underwater imaging faces a number of 

challenges, including:



1.3 Objectives
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⚫ Propose a Retinex-based method for simulating the human visual perception system that is 

intended to enhance the contrast of underwater images.

⚫ In consideration of the inherent optical properties underwater, employ an improved color 

correction technique to avoid introducing artifacts.

⚫ In the case of hazy or blurred images, use morphological operations to improve the visibility of 

details.

It is necessary to propose an effective underwater image enhancement method.



2. Related Work
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Fig. Jaffe-McGlamery underwater imaging model.

𝐸𝑇 = 𝐸𝑑 + 𝐸𝑓 + 𝐸𝑏

𝐸𝑇 - Total irradiance which enters the camera

𝐸𝑑 - Direct component 

𝐸𝑓 - Forward scattering component 

𝐸𝑏 - Backward scattering component 

Jaffe-McGlamery underwater image model

2.1 Underwater Imaging Theory



2.1 Underwater Imaging Theory
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Fig. The selective attenuation of light.

⚫ The absorption of light in water varies with wavelength.

⚫ Red light with longer wavelengths is absorbed first by 

water, followed by orange, yellow, green, and blue.

⚫ Underwater images having mostly green or blue tones.

Absorption of light during underwater propagation
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2.2 Underwater Image Processing Technology

Fig. Underwater Image Processing Technology.



2.2.1 Image Restoration-Based Methods
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⚫ This kind of method builds an appropriate physical model by studying the physical 

mechanisms of underwater image degradation. 

⚫ These methods usually follow the same pipeline:

Method Principle

Underwater Optical Imaging-Based Methods 𝐼(𝑥, 𝑦) = 𝐽(𝑥, 𝑦)𝑡(𝑥, 𝑦) + 𝐴(1 − 𝑡(𝑥, 𝑦))

Polarization Characteristics-Based Methods 𝐼(𝑥, 𝑦) = 𝐷(𝑥, 𝑦) + 𝐵(𝑥, 𝑦)

Prior Knowledge-Based Methods 𝐽𝑑𝑎𝑟𝑘(𝑥) = 𝑚𝑖𝑛
𝐶∈{𝑟,𝑔,𝑏}

( 𝑚𝑖𝑛
𝑦∈Ω(𝑥)

𝐽𝐶(𝑦)) ≈ 0

1) building a physical model of the degradation; 

2) estimating the unknown model parameters; 

3) addressing this inverse problem.

⚫ These methods follow simplified image formation models, but real scenes are more 
complex, and parameter estimation is also a big challenge.



2.2.2 Image Enhancement-Based Methods

12

⚫ This kind of method does not consider the actual physical process of image 

degradation, but rather the degraded image.

⚫ The enhanced image with higher contrast, richer detail information, and better visual 

effects by enhanced processing.

⚫ Over-exposure and over-enhancement also occur frequently.

Method Principle

Frequency Domain-Based Methods Convolution or spatial transformation

Spatial Domain-Based Methods Grayscale mapping

Retinex-Based Methods Color Constancy

Fusion-Based Methods Gaussian Pyramid or Laplacian Pyramid



2.2.3 Deep Learning-Based methods
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⚫ This kind of method aims to use network models with rich structures to learn nonlinear 

representations of training data.

⚫ The lack of high-quality training datasets limits the development of deep learning based methods.

Method Example

Convolutional Neural Network, CNN WaterNet, UWCNN, UColor

Generative Adversarial Network, GAN WaterGAN, UGAN, TACL

Vision Transformer, ViT URSCT-SESR



3. Methodology



3 General Framework
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Fig. Flowchart of the proposed method.



3.1 Underwater Color Correction
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Fig. Underwater color correction results. Applying color 

correction directly will produce severe red artifacts.

𝑅, 𝐺 - Red and green channels
ത𝑅, ҧ𝐺- The mean value of 𝑅, 𝐺
𝜌 - a constant parameter

𝑅𝑐𝑜𝑚𝑝 - Red compensated channel

Red channel compensation equation

𝑅𝑐𝑜𝑚𝑝 = 𝑅 + 𝜌 × ( ҧ𝐺 − ത𝑅) × (1 − 𝑅) × 𝐺



3.1 Underwater Color Correction

17Fig. Red channel compensation.

Red channel compensation equation

Fig. Color correction results under 

different background colors. 

𝑅𝑐𝑜𝑚𝑝 = 𝑅 + 𝜌 × ( ҧ𝐺 − ത𝑅) × (1 − 𝑅) × 𝐺

Red ChannelImage Green Channel Blue Channel Result



3.2 Retinex Model Enhancement
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Fig. Retinex theory model.

𝑰 = 𝑳⊙𝑹

𝑰 - The observed image

𝑳 - The illumination component

𝑹 - The reflectance component

⊙ - The element-wise multiplication

A simplified Retinex model can be expressed as

𝑚𝑖𝑛
𝑳,𝑹

𝑰 − 𝑳⊙ ԡ𝑹 𝐹
2+ 𝛼 𝑺0 ⊙∇ ԡ𝑳 𝐹

2+ 𝛽ቛ𝑻0 ⊙∇ ԡ𝑹 𝐹
2

The objective function that estimates illumination and 

reflectance components

𝑺0, 𝑻0 - The weighting matrices of 𝑳 and 𝑹
𝛼, 𝛽 - Constant parameters

Illumination

Reflectance

Observer
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3.2 Retinex Model Enhancement
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3.2 Retinex Model Enhancement

Fig. The process of enhancing underwater image based on Retinex.

𝑅𝑎𝑤 𝐼𝐶𝑜𝑙𝑜𝑟

𝐿 𝐿𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑

𝑅

Illumination 

enhancement

Reflectance 

enhancement

𝑅𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑

𝐼𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡



3.3 Underwater Information Recovery
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⚫ Recover missing details through morphological operations, overcoming blur caused 

by scattering.

⚫ Through appropriate combinations of morphological opening and closing operations, 

missing details can be filled in and unwanted noise eliminated.

𝕎 𝐼, ε1, ε2 = 𝐼 − [(𝐼 ∘ ε1) • ε2]

𝔹 𝐼, ε1, ε2 = [(𝐼 • ε1) ∘ ε2] − 𝐼

𝕎 - The  white top-hat transformation

𝔹 - The  black bottom-hat transformation

∘ - The morphological opening operation

• - The morphological closinging operation

ε1, ε2 - Two different structural elements

Fig. Structure elements. ε1 = 15 ×
15, ε2 = 5 × 5.

⚫ Introduce two different-sized structural elements to reconstruct 

missing details of underwater images. 

⚫ The new proposed morphological operations can be expressed as



3.3 Underwater Information Recovery
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Fig. Detail enhancement results using different structure elements. 

(a) Blurred image. (b) ε1 = 15 × 15, ε2 = 5 × 5. (c) ε1 = 10 ×
10, ε2 = 10 × 10. (d) ε1 = 5 × 5, ε2 = 15 × 15.

Fig. Detail enhancement results. 



4. Experiment Results



4.1 Experiment Settings
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⚫ Comparison Methods. Comparison with 10 other methods, including UDCP, GDCP, BRUIE, 

Shallow-UWnet, SGUIE-Net , TACL, PUIE-Net, WWPF, MSPE, CMSFFT.

⚫ Benchmark Datasets. Testing on the UCCS, UIEB and U45 datasets. 

⚫ Evaluation Metrics. Underwater color image quality evaluation (UCIQE), underwater image quality 

measure (UIQM), and frequency domain underwater measure (FDUM). 

𝑈𝐶𝐼𝑄𝐸 = 𝑐1 × 𝜎𝑐ℎ𝑟𝑜𝑚𝑎 + 𝑐2 × 𝑙𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 + 𝑐3 × 𝜇𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑈𝐼𝑄𝑀 = 𝛾1 × 𝐷𝑈𝐼𝐶𝑀 + 𝛾2 × 𝐷𝑈𝐼𝑆𝑀 + 𝛾3 × 𝐷𝑈𝐼𝐶𝑜𝑛𝑀

𝐹𝐷𝑈𝑀 = 𝜆1 × 𝑐𝐶𝑜𝑙𝑜𝑟𝑓𝑢𝑙𝑛𝑒𝑠𝑠 + 𝜆2 × 𝑐𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 + 𝜆3 × 𝑠𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠



4.2 Comparison of Color Correction
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Fig. Comparative analysis of color correction techniques. From top to bottom are the raw underwater images 

from the Blue, Blue-green, and Green subsets of UCCS, respectively.



4.3 Comparison of Different Scenarios
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Fig. Comparative analysis based on the UIEB-890 dataset. Images presented from top to 

bottom demonstrate hazy,color distortion and poorly visible underwater images, respectively.

(a)Raw (b)UDCP (c)GDCP (d)TACL (e)WWPF (f)PUIE-Net (g)SGUIE-Net (h)Our results



4.3 Comparison of Different Scenarios
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Fig. Comparative analysis based on the UIEB-60 dataset.

(a) Raw (b) UDCP (c) GDCP (d) BRUIE (e) SGUIE-Net (f) TACL (g) PUIE-Net (h) WWPF (i) CMSFF (j) Proposed



4.4 Comparison of Detail Improvement
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Fig. Comparative analyses of detail improvement.



4.5 Quantitative Comparisons
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Table1. Quantitative comparison on UIEB-890.

Method UCIQE UIQM FDUM

UDCP 0.5980 1.5724 0.6042

GDCP 0.6044 1.4695 0.7383

BRUIE 0.5881 1.5020 0.6815

Shallow-

UWnet 

0.5214 1.1088 0.4127

SGUIE-Net 0.6192 1.3463 0.5967

TACL 0.6125 1.3600 0.5892

PUIE-Net 0.5852 1.2704 0.5239

WWPF 0.6181 1.5405 0.7166

MSPE 0.6286 1.3366 0.6493

CMSFFT 0.5644 1.4175 0.6270

Proposed 0.6333 1.5658 0.7466

Table1. Quantitative comparison on U45.

Method UCIQE UIQM FDUM

UDCP 0.5990 1.5648 0.6534

GDCP 0.5634 1.2384 0.4733 

BRUIE 0.5911 1.5764 0.7320 

Shallow-

UWnet 

0.4881 1.0388 0.3529 

SGUIE-Net 0.5992 1.1606 0.4022

TACL 0.6297 1.5300 0.6918

PUIE-Net 0.5661 1.3480 0.5109

WWPF 0.6039 1.5853 0.6932

MSPE 0.6262 1.5051 0.7416

CMSFFT 0.5530 1.3462 0.5218

Proposed 0.6306 1.5790 0.7827
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4.6 Ablation Study

Fig. (a) Raw images. (b) Results without red light compensation. (c) Results without 

Retinex illumination enhancement. (d) Results without morphological transformation 

for detail enhancement. (e) Proposed results.
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4.7 Convergence Analysis

Fig. (a) Raw images. (b) Results. (c) 𝐿 error shrinkage. (d) 𝑅 error shrinkage.
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4.8 Applications

Fig. Underwater image key point detection. 

Fig. Underwater image segmentation. (a) Raw. (b) Original rsults. 

(c) GDCP. (d) WWPE. (e) Proposed. 

Fig. Underwater scene enhancement. 



5. Conclusion and Future Work
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5.1 Conclusion

⚫ Underwater Image Color Correction. Presented a color correction approach that compensates 

for the absorption of red light in water.

⚫ Retinex Model Enhancement. Employed the Retinex framework to decompose underwater 

images into reflectance and illumination. It effectively enhances underwater images by simulating 

the way the human eye perceives light and shadow.

⚫ Underwater Image Information Recovery. Used morphological operations to recover missing 

details and enhance information.
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5.2 Future Work

⚫ Algorithm Optimization. The algorithm proposed currently takes a long time to process complex 

underwater images. Future work should focus on optimizing the algorithm for faster execution and 

reduced time complexity.

⚫ Addressing Additional Challenges. While this thesis successfully tackles color difference, low 

contrast, and blur issues in underwater images, the real underwater environment may present more 

serious challenges. Researchers should explore solutions for various other underwater image 

problems beyond the ones addressed here.

⚫ Practical Application and Validation. To validate and improve the proposed algorithm, it needs to 

be applied in practical production and manufacturing scenarios. Real-world testing will provide 

valuable insights and guide further enhancements.



Thank you!


